top of page

THEORY EM

The resolution chart

8 Å  Alpha helices

5 Å  Alpha helix grooves

4.5 Å Separation of beta-strands

3.8 Å Most sidechains

3.5 Å All side chains, metal ions

< 3.5 Å Useful for Pharma

Equation 1: Determination of λ  at different accelerating voltages kV (keVmax)

                  λ = h/(2meV)^0.5

                     = 6.62*10^-34Js/(2*9.1*10^-31kg*1.6*10^-19C*V)^0.5

                     = 12.25* 10^-10 / (V)^0.5

λrelativistic = λ * 70% *speed of light

                     = λ * 1/(1+eV/(2mc^2))^0.5

Accelerating voltage (kV)              λ (relativistic) (nm)                     λ(relativistic) (pm)                      λ(relativistic) (Å)                        100                                                     0.00370                                        3.70                                     0.0370

               200                                                     0.00251                                        2.51                                     0.0251                  

               300                                                     0.00197                                        1.97                                     0.0197                                    

Equation 2: Effect of Objective Aperture (OA) radius on Abbe resolution limit at 300kV (keVmax)

k0: wave vector of fast e- before scattering

k1: wave vector of fast e- after scattering

  q: magnitude of scattering 2k0sin(Θ/2) for a full angle of the cone of light

Why half angle of the cone light to determine Abbe resolution limit?
 

Source: http://www.ou.edu/research/electron/bmz5364/resolutn.html

            : http://micro.magnet.fsu.edu/primer/java/imageformation/rayleighdisks/

According to Abbe diffraction theory,

                                                    NA = sin(Θ/2) * n, NA is the numerical aperture of the objective

                                                                                  , n is the refractive index separating the specimen and the objective front lens

                                                                                  , Θ/2 is the half cone of light

Since angle (Θ/2) is very small, sin(Θ/2) == Θ/2 (rad)

                                                   NA = Θ/2 (rad) * n

By Rayleigh criteria for circular aperture to separate two points by at least the radius of the airy disc.

                          airy disc radius, Å = 1.22 * λ (Å)/(2 * NA)

                                                         = 1.22 * λ (Å)/(2 * Θ/2 (rad) * n)

When two adjacent airy discs reach Rayleigh criteria,

   Resolution = airy disc radius, Å  = 1.22 * λ (Å)/(2 * Θ/2 (rad) * n)

                                                          = 0.612 * λ (Å)/(Θ/2 (rad) * n)

First to determine half the angle of the cone Θ/2 (mrad), note the units um and mm used)

 

OA diameter: 10um

OA radius: 5um (to determine for half the angle of the cone Θ/2)

Δ(OA-sample plane): 2.5mm

(Θ/2) = 5um/2.5mm = 2mrad of light from specimen plane intercepted by the objective aperture or the OA plane

Second to determine Abbe resolution limit derived from Θ/2 or the OA plane

                                                                          

OA plane = 2mrad (0.002 rad)

Abbe resolution limit (Å) at 300kV = 0.612 * λ300kV (Å)/(sin(OA plane, rad) * n), n =1 in vacuum

                                                             = 0.612 * 0.0197/ (0.002*1) = 6.02

Abbe resolution limit (Å) at 200kV = 0.612 * λ200kV (Å)/(sin(OA plane, rad) * n), n =1 in vacuum

                                                             = 0.612 * 0.0251/ (0.002*1) = 7.68

OA radius (um)             Δ(OA-sample plane) (mm)                OA plane (mrad)                  sin(OA plane) (rad)                λ300kV (relativistic) (Å)            Abbe resolution  

                                                                                                                                                                                                                                                                     limit (Å)

         5                                            2.5                                                     2                                           0.002                                             0.0197                                    6.02                     30                                        6.98                                                  4.3                                        0.0043                                           0.0197                                    2.80           

        50                                        7.10                                                  7.0                                        0.0070                                              0.0197                                      1.72

        70                                        7.22                                                  9.7                                        0.0097                                           0.0197                                      1.24

       100                                       7.35                                                13.6                                       0.0136                                           0.0197                                       0.89

At a narrow OA plane (Θ/2) window of 2mrad, e- >> the aperture angle mrad scatter above/below the sample plane and not intercepted in the OA plane.

With increasing OA radius, more e- pass and the spatial frequency increases.

Comparison of direct electron detectors

Detector                                                                 Falcon 3EC                         Falcon-II                     K2 Summit                           DE-20

Operation voltage                                          200 and 300kV                      300kV                         300kV                              300kV

Sensor size                                                         4096x4096                    4096x4096                  3838x3710                    5120x3840

Physical Pixel size                                                   14um                              14um                           5.0um                              6.4um

Camera architecture                                               DED                                 DED                              DED                                  DED                          

Frame rate per second                                           40fps                               18fps                          400fps                           25-32.5fps

DQE  @ 0.5 Ny @  

fast mode: 10e/pixel/s                                        (0.45-0.7)                         > 0.4                             >0.52                                 >0.35

                                                                Normal EC mode: 1e/pixel/s

                                                                Slow EC mode: 0.7e/pixel/s

DQE score (low spatial frequency)                         2                                       2                               Highest (1)                            4                                 

DQE score (high spatial frequency)                Highest (1)                             2                                     3                                        4

*High DQE (low spatial frequency) improves particle alignment, thus K2 Summit is preferred for MW < 500kD.

*The K2 sensor pixel is slightly smaller than the area that the electron interacts with, resulting in a 2x2 sub-pixel improvement, beyond the physical Nyquist limit e.g. 3.8k x 3.7k to 7.6k x 7.4k. This 2x2 enhancement is the super-resolution mode, which also minimizes noise due to aliasing (click) of signal whose spatial frequency is higher than Nyquist.

* A total dose of 40-50e/Å^2 is typically collected. Higher total dose 70e/Å^2 may be useful for smaller stable proteins.

Determining the actual pixel size (Å/pixel) of image

(1) Scanning step =  4000 dpi (dots per inch) = 4000 pixel/in

(2) 1 in = 25400 um hence (25400 um/in) / (4000 pixel/in) = 6.35 um/pixel

(3) Magnification  = 40000 X

(4) 6.35 um/pixel = 63500 Å/pixel at 40000 X

(5) The actual Å/pixel = 63500/40000 = 1.59 Å/pixel at 1X Magnification (binning = 1)

(6) The Å/pixel at bin 2 =  1.59 Å/pixel * 2 = 3.18 Å/pixel (binning is NOT allowed for actual model refinement)

Detector                                                         Falcon-II                    

Operation voltage                               200 and 300kV                     

Pixel size (um/pixel)                                     14um

Pixel size (Å/pixel)                                      140000

Nominal Magnification                               75000X

Calibrated Magnification                          134600X

Sampling  at 1X (Å/pixel)              140000/134600 = 1.04

Effect of structure factor and imperfect particles on the resolution limit

Effect of beam-induced Brownian motion on the resolution limit

                                                                               Water (18D)                     CprK (25kD)                          Hexokinase (100kD)                    Ribosome (2.5MD)

Dose frame exposure (e/Å^2)                                  25                                        25                                                 25                                                   25

Stokes-Einstein Diffusion Coefficient                1/18^0.33                                -                                                      -                                                      -                         

            (D ∝1/MW^0.33)                                     = 0.382                                0.0342                                         0.0216                                         0.007372

Normalized D   (Å^2/s)                                              1                             0.382/0.0342 = 11.2                             17.7                                         51.8 (slowest)

Slowing factor, Normalized D^0.5 (Å)                    1                               11.2^0.5 = 3.35                                     4.2                                                  7.2

RMS displacement (Å)                                              5                                   5/3.35 = 1.5                                        1.2                                                 0.7

                                                                            

The RMS displacement of water is ~1Å^2 for each e/Å^2. Thus at 25e/Å^2, the RMS displacement of water is 25Å^2 or 5Å.

Hence random Brownian type of beam-induced motion of biological structure only affects very small particles at resolution of 2 Å or beyond.

Source: Ultramicroscopy (2015) 158: 26-32

Micrographs and power spectra

The pattern of the visible Thon rings in the power spectra describes the quality of the micrograph. At close to focus (e.g. -0.65 µm), the Thon rings are broadly separated by dark minima compared to defocus (e.g. -2.0 µm) with clear rings pattern. The number of dark minima corresponds to loss of phase contrast (information) at different sinusoidal periodicities. The outermost visible Thon ring indicates the achievable resolution in an ideal sample e.g 2/3 of the power spectra ~3-4 Å. The lack of clear circular pattern of Thon rings marks the micrograph for discard due to reasons e.g. drift, severe ice contamination and striped background due to beam or camera gain.

Reference: Signal-to-noise ratio of electron micrographs obtained by cross correlation. Nature. 1975 256: pp376                                                         

 

                                                                 Defocus range (µm)                Defocus steps  (µm)                 Total Dose (e/Å^2)

Larger complexes                                      -0.6 to -2.0                              0.3 to 0.5                                        40 to 50

Smaller complexes ~250 kD                     -1.8 to -3.8                             0.3 to 0.5                                           > 40

* Overfocus: white outer ring (ringe), Underfocus: black fringe. Thin white fringe indicates slight underfocus which is optimal for TEM, minimises spherical aberration and improves contrast

                                                                 Counting K2                                    Falcon II

Dose rate (e-/pix/sec)                                   5                                                       -

Dose rate (e-/Å^2/sec)                                 4.2                                                   2.5

Pixel size (Å/pix)                                            1.1                                                  1.4

For the same total dose, a longer exposure time ~x2 is needed for the integrated Falcon II than the counting K2.

Dose Setup for Frames in Falcon II-EPU

EPU frame   Begin       End

1                      1               2

2                      3               4

3                      5               6

4                      7               8

5                      9               14

6                     15              20

7                     21              26 (hacked to increase the 18fps limit in Falcon II)

*Image shift delay: 10s

Stage shift delay: 12s

Maximum image shift: 10µm

Integration time: 1.5s

Total frames: 26

Subframe accumulation time: 1.5/26 = 58ms (200ms was used in Nature Methods (2013) 10:pp58)

High Resolution Frames up to 20e-/Å^2: Begin1 to End 8

(1) The first frame begin 0 is automatically not collected by EPU due to beam-induced motion and shutter delay ~100ms

(2) For a total dose of 67.5e-/Å^2, the total dose 67.5e-/Å^2 from EPU frame 1to7 (or 26 frames or 2.596e-/Å^2 per frame) is used for initial model building with optional binning to a specific resolution of pixel size 3.5Å/pix. The initial model resolution should not be better than 3.5*3 Å. 

(3) For a collected dose of 20e-/Å^2, EPU frame 1to4 (or 8 frames), unbinned and CTF corrected images will be used together with good 2D class averages  derived from all-frames (step 2) for high resolution model reconstruction thus discarding EPU frame 5to7 or the last 47.5e-/Å^2 due to radiation damage (begins > 30 e-/Å^2)

(4) The volume * 1.21 = ~ kDa

Reference: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods (2013) 10:pp584

The Objective Aperture

(1) At low to medium magnification at LM mode, turn the Objective Aperture towards (to the right) the Holder Entry Port to remove aperture

(2) At high magnification SA mode 62000X, turn the Objective Aperture away (to the left) from the Holder Entry Port to insert aperture to increase contrast

(3) After operation, turn the Objective Aperture back to the right to remove aperture

Troubleshooting

EMAN2 on Macintosh

(1) Changed my terminal to /bin/csh

(2) In terminal: touch ~/.cshrc; open -e ~/.cshrc

(3) In ~/.cshrc: test -r /Applications/EMAN2/eman2.cshrc && source /Applications/EMAN2/eman2.cshrc

(4) In Terminal, type e2display.py

awk options:

http://linux.about.com/library/cmd/blcmdl1_awk.htm

http://www.hcs.harvard.edu/~dholland/computers/awk.html

http://www.thegeekstuff.com/2010/01/8-powerful-awk-built-in-variables-fs-ofs-rs-ors-nr-nf-filename-fnr/

Low-pass filter (removes high frequency noise) to faciliate particle picking in micrographs ONLY. Low-pass filtered micrographs should NOT be used for actual reconstruction since applying a low-pass filter (Gaussian blurring, B-factor) favors low-resolution information for subframe alignment.

bandpass filter:

http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/FourierFilter

http://lsbr.niams.nih.gov/bsoft/programs/bfilter.html

#-bandpass 25.3,200,0.02Bandpass filter: resolution limits (angstrom) and band edge width (1/angstrom).

#-sampling 1.5,1.5,1.5Sampling (A/pixel; default from input file; a single value can be given).

cp $FILE $NEWNAME

bfilter -bandpass 25,200,0.02 -sampling 1.35,1.35 $NEWNAME $filter_file

XMIPP to Relion

(1) XMIPP tool volume/resize may be used to even the box size as readable for Relion model reconstruction.

Additional Reading Materials

(1) Avoiding the pitfalls of single particle cryo EM : Einstein from noise. PNAS (2013) 110: pp18037

(2) Prevention of overfitting in cryo-EM structure determination. Nat Methods (2012) 9: pp853

(3) Image Restoration in cryo-Electron Microscopy. Methods Enzymol (2010) 482: pp35 ***

(4) Tilt-Pair Analysis of Images from a Range of Different Specimens in Single-Particle Electron Cryomicroscopy. J Mol Biol (2011) 413: pp1028 ***

(5) SIMPLE: software for ab initio reconstruction of heterogeneous single particles. J Struct Biol (2012) 180: pp420 

(6) Methods to account for movement and flexibility in cryo-EM data processing. Methods (2016) 100: pp35 ***

(7) Sampling the conformational space of the catalytic subunit of human γ-secretas. Elife (2015) 4. pii: e11182***

(8) Image Processing for Electron Microscopy Single-Particle Analysis Using XMIPP. Nature Protocols (2008) 3: pp977****

(9) https://biocomp.cnb.csic.es/3DEM-Methods/index.php/Main_Page

© 2013 by JACKWEE

 

  • w-facebook
  • w-flickr
bottom of page